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A description is given of a model which predicts the motion of combustion products and fresh air caused by a fire
located in one room of a two-room structure. The gas in each room is assumed to be divided into two homogeneous
layers, a layer next to the ceiling which contains hot combustion products and one next to the floor which contains
fresh air. The model predicts the motion of the interface separating these layers and the density of the hot layers
as a function of time and an arbitrarily specified fire heat release rate.

INTRODUCTION

A fire starts in a room of a multiroom structure. Hot
gas rises from the fire, entrains fresh air from the room
as it rises toward the ceiling in a buoyant plume, and
forms a distinct layer of hot gas under the ceiling. This
ceiling layer of hot gas gradually becomes thicker
and finally starts to flow out under the door soffit into
the next room. Under the influence of heat transfer
from the fire and ceiling layer gas, the fire heat input
grows and combustible material surrounding the fire
is gradually heated. Finally, some minutes after ignition,
these uninvolved fuel elements begin to pyrolyze rapidly,
fire spreads through the combustible products of pyrolysis
and room flashover occurs.

During the early stages of this process the heat released
by the fire keeps the pressure in the room above that in
adjoining rooms, and both hot combustion products
and unheated air flow out of the door. Later on, the
pressure may fall below the ambient value. Then, fresh
air can enter the room through the lower part of the
door, to replace that entrained in the plume; and the
hot combustion products will be able to flow out of the
upper part of the door.

The hot gas flowing out of the fire room forms a
ceiling layer of hot products in the adjoining room which
becomes deeper until hot gas can flow on into other
rooms further from the fire.

The spread of combustion products and fire described
above is a complicated phenomenon which involves
many interacting physical processes. These include the
flow of products of combustion and fresh air into and
out of the rooms affected by the fire, the transfer of
heat by radiation and convection, the growth of the
area involved in flaming combustion, pyrolysis of
unignited fuel elements, ignition of the products of pyro-
lysis, etc. We have been interested in the fluid dynamic
aspects of the overall fire spread problem and in the
present paper we describe a model which predicts
the motion of the combustion products and fresh air

which is caused by a fire in one room of a two-room
structure. The rooms are joined through a single rectan-
gular opening of arbitrary elevation, height and width,
and each room may have rectangular openings to the
outside of arbitrary number, height, width and elevation.

We have restricted our solution to the period prior
to flashover. During this period the hot products of
combustion are usually so sharply stratified that we
believe it is useful to divide the room into two distinct
layers: a hot layer next to the ceiling called here the
ceiling layer, and a cooler layer next to the floor. In
our analysis we ascribe a single temperature and density
to each layer, and the purpose of the calculations
described here is to follow the changes in layer thickness
and density during the course of a fire. This two-layer
model is a rough approximation of the actual temperature
profiles observed in real fire situations and its use
greatly simplifies the calculations without losing the
essential features of the process.

We do not attempt to calculate many important
features of the fire. For example, we shall treat as
given functions of the time, the fire heat input rate and
the heat transfer rates from various regions of the gas.
We have ignored the spreading process of the thin
hot gas layer along the ceiling immediately following
the impingement of the fire plume or the door plume
in the adjacent room. Instead, in keeping with the two-
layer model, we assume that the hot gas spreads instan-
taneously over the ceiling as soon as the plume hits it.

The model described here is part of a continuing
program for the development of a fire spread model
which is being carried out under the auspices of the
Fire Research Center of the National Bureau of
Standards.

The two-layer model has its origin in the work of
Kawagoe (e.g. Ref. 1) who studied the flow of gas
through an opening connecting a region containing
gas with uniform temperature and composition (i.e.
a single layer) to a fire room which was treated as a
well-stirred reactor which contained gas at a different
uniform temperature and composition. Later, P. H.
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Thomas and co-workers (e.g. Ref. 2) studied flows in
which there was a well-defined stratification of hot and
cold gas within a single compartment.

The ideas behind the present two-layer room models
have been discussed previously at many meetings and
in a number of papers (e.g. Refs. 3 and 4). Other papers
dealing with the application of the model are given in
Refs. 5-8. The computer model described here puts
these ideas into a simple numerical program, extends
current programs to a two-room configuration and
extends several of the models of physical processes.

We shall describe the physical basis for our model
and typical results, but shall not go into details of the
computation here. A complete description of the
computer program is given in Ref. 9.

PHYSICAL BASES FOR MODELING

Several elements of the present model are described
in this section. These are: the fire plume, a turbulent
buoyant plume in which cool air is entrained, heated
and transported to the ceiling layer; the flow through
openings under the influence of a hydrostatic pressure
field; and entrainment by the gas flowing through
the opening. Given mathematical models for these
elements and the equations for conservation of mass
and energy for each layer, we have developed a numerical
calculation for the pressure, temperature, density and
height of each layer in the two-room model. Generaliza-
tion of the model to include more rooms is presently
in progress.

In the following paragraphs we give a brief derivation
of the conservation laws and describe the physical
bases for the mathematical models of other flow pheno-
mena.

Equations of conservation of mass and energy

Suppose that a fire with heat release rate Q is burning
in room 1, and that room 2 is connected to room 1
through one opening. Rooms 1 and 2 may have other
openings to the outdoors. The geometry and symbols
are shown in Fig. 1 and symbols are defined in the
Appendix. Equations for mass and energy balance for
the ceiling layer and the lower layer in room 1 are
given below. Equations (1) and (2) are the continuity
equations, and (3) and (4) are equations for the internal
energy of the gas in each layer. The dy;/d¢ terms in
(3) and (4) are included to account for the work done
by pressure forces on the moving interface between the
two layers.

d . .

& (p1y181) =1 —mg (D
d [pni(hi—y)Sil=me+me+rm  (2)
dt

d . .
(%(p1y181CvT1)+p1Sl {71=611~mECpT1 (3)

d d . .
a [pn1(h1—p1)S1CyTh1] — p151 ay?l =mgeCpT1+ Q0 —qdm
4

In these equations, n2; and ripy are the algebraic sums
of all mass flows through openings into the layer in
question. Also, ¢1 and ¢n: represent the sums of (a)
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Figure 1. Schematic diagram for two-room model to illustrate
notation.
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enthalpy fluxes through the openings and (b) heat
transfer by convection and radiation into the respective
regions. The mass flow entrained by the plume in the
lower layer and transported into the upper layer is rig
and fuel flow rate is 7.

The static pressure within a room varies because
of hydrostatic effects by terms of the order of pgh and
thus errors of the order of pgh compared to a mean
value p; are made if the hydrostatic terms are omitted.
However, the ratio of hydrostatic pressure to static
gas pressure is very small. Thus, for a room height 4
of 2.5m,

peh < p=gh <3x104

p1
Hence we can neglect these hydrostatic effects in the
equations of state, which may be written as

piRTi=p1 and  pniRThi=p1 (%)

We have also assumed here that the gas constants Ry
and R are equal. When we replace (p171) and (pn17h1)
by p1/R in Eqns (3) and (4), and add the resulting equa-
tions, we obtain an equation for p; of the form

dpl_ R . .
W-m(é[“‘@lhﬁ' 0) (6)

The temperature and hence the density in the lower
region changes with pressure changes in the room
and also because of heat transfer to the gas in the lower
layer. The relative magnitude of the pressure variation
is small in many cases of practical interest. The heat
transfer to the lower layer air is produced by mixing
between hot and cold gas flows at openings, and by
convective heat transfer from the floor and walls that
are heated by radiation from the fire, from the hot
ceiling layer gas, and from the walls and ceiling in
contact with the ceiling layer gas. In the first few minutes
of a fire these effects are often small, and when these
effects are negligible, T1 and p; are equal to the tempera-
ture and density of the ambient air, i.e. to 7T, and
pw respectively. For simplicity, this assumption is made
in the numerical program described here. (The more
complete problem is also being programmed.)

Given these simplifications, the system of differential
equations (1), (2) and (6) reduces to

d . .
P St £=m1~mE @)
d . . .
S1 g; [ —y1)pnal =rivw + rivg + rima ®)
dp:

R . .
dr = CoSiia (G1+dn+0) &)
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A similar set of equations can be developed for the

two layers in room 2. Thus, six conservation equations
plus two equations of state are available to solve for
the eight unknowns: pn1, Thi, y1, p1, and pn2, The,
Y2, p2.

However, before solving these equations we must
be able to specify the dependence on these eight variables
of the heat and mass flux terms, such as gn1 and 1.
These flow processes are described in the following
paragraphs.

Entrainment by fire plume

The primary source of entrainment is the fire plume
which acts as a pump to move air up into the ceiling
layer. The fire plume is well enough understood for
the entrainment rate produced by physically small
fires (for which the heat release region lies beneath the
ceiling layer) to be described adequately. Larger fires
(which penetrate the ceiling layer) cannot yet be treated
with any confidence. At present we use the conventional
Boussinesq treatment, described here, for all fires
regardless of size. This model is adequate for small
fires.

This fire plume model is based on that described
by Morton et al.1% and it makes use of the Boussinesq
approximation that density differences are small enough
to be ignored everywhere except in the buoyancy terms
of the momentum equation. One free parameter is
available to fix the rate of entrainment of fresh air by
the plume. When the experimental results of Yokoill
are used to determine the constant that appears in
the entrainment assumptions, the turbulent fire plume
can be characterized by the following equations:

ATm A
To= =00 Crrod
M (@28 Cyx3.8
274
!
Z=G C1=0.125
lt_ Clc_
Z—Cl ”C,—l—l.ls

and

A= exp (= ()%

o =P (= (r/1)?)

Here the subscript m refers to conditions on the centerline
of a plume with Gaussian distribution of velocity w,
temperature 7' and density p. Length scales for the
radial distribution of temperature differences AT =7 —T w
and velocity are /t and /v. The parameter Qz* is a dimen-
sionless measure of the rate of heat input from the
fire, 0, and height above the fire Z. It is defined as

02*=0/(poV8Z CyTZ?) (10)

Measurements made above the visible flame of a
fire, and where Z is large compared with the diameter
of the fire D, are in good agreement with the predictions
made from this representation (see Refs. 11 and 12).

Given these approximations, we can show that the
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mass-averaged temperature and density in the plume
are
AT Ap I o Y
—_— = — /3 =
Too P (WCvClz)(QZ ) ’hECpToo

and mass flow in the plume at height Z is

mE= P oWmaxmly?
or o
ME=p\8Z (Q2*)V3Z {mCyCi?) (1n

A development similar to that outlined above for
the axisymmetric plume can be carfied out for the
plume above a line fire. The only new parameter is
the fire length L and we again use a dimensionless heat
addition parameter Qg* which is based on the total
heat released by the fire and elevation:

o Q0
Q: pCoT oV gZ LZ

where Q=total heat addition rate. The plume equations
are based on the assumption of a Gaussian distribution
for velocity and temperature with a scale /. The model
equations are

Tt €y Qutyo Cra=2.6

T = Cua @i Ciz=2
Iy k _
E_Clz ClZ——O.].4

mE2=poVgZ ZLOs*13(\/7 Cy2Cis)
AT , — Ap
T =(V7 CvaCi2)(Q2*)2/3==F
-¢] poo
The values of constants are much less certain here
than for the axisymmetric case, and again, the Bous-
sinesq approximation has been used.

Entrainment at an opening

Entrainment at an opening is even less well understood.
We describe here several entrainment processes and
discuss the ad hoc entrainment model used in the present
computer program; clearly, a more complete description
must be developed. Two situations in which strong
entrainment at an opening have been observed are
illustrated in Fig. 2. In Fig. 2(a) we show a situation
in which pressure differences across an opening cause
a jet of hot gas to flow under the soffit of an opening
and impinge on the ceiling layer of an adjacent room.
The jet entrains gas from the cooler region of the second
room during this process and under some conditions
the entrained flow will be larger than the flow through
the door.

A number of regimes of flow must be taken into
account if we are to model this phenomenon accurately.
Two additional situations are shown in Fig. 3. When
hot fluid begins to flow through the door, the door
jet usually stays attached to the wall (see Fig. 3(a))
and entrains fluid on one side only. As the depth of
the flow at the door (yu— y1) increases, the flow separates
from the wall (see Fig. 2(a)) and entrains fluid on both
sides. A third type of flow which occurs when the depth
of the hot layer in room 2 is very shallow is illustrated
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Figure 2. Mixing in the opening.
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Figure 3. Door mixing regimes.

in Fig. 3(b). The door-jet flow (attached or detached)
splashes energetically through the thin ceiling layer
and produces a very rapid mixing of door jet and cool
layer material in a process similar to a hydraulic jump.

We are still developing models to describe these
mixing processes and to specify the conditions under
which transition between these regimes will occur.
In the present calculation we include only a model for
the detached jet without splashing.

Parallel situations exist when a flow from a lower
or cool layer enters an adjoining room. One case is
shown in Fig. 2(b). We use the same type of model for
these flows as for the previous examples.

Based on salt-water modeling work, we conclude
that the characteristic dimension for the flow shown in
Fig. 2(a) is the depth Zq=(y2—yo), where yo is the
elevation in the doorway where the pressure difference
across the door is zero. For shallow plumes in large
doors, yoxy1i. The water model tests suggest that
the entrainment can be estimated by assuming that the
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door jet acts like a simple, point source buoyant plume.
Thus, the experimental data obtained in salt-water/water
tests indicates that

my=(Cy)p2VgZa Za2(Qaq*)V/3

where we use as an analog for Q* the term
Qa*=(rin1Cp(Tn1— T2))/p2CoT2V8Za Za?

Model experiments suggest that Cy=0.30 for the separat-
ed case and Cy=0.18 for the attached flow. Compare
this description with Eqn (10) used for the axisymmetric
buoyant plume.

The experimental work used to develop this cor-
relation- is described in Ref. 13 and is preliminary
in nature. Nevertheless, the correlation was satisfactory
for geometries in which we expected that the line source
would make a more reasonable approximation. This
rather unlikely result certainly needs further experi-
mental confirmation, but it will be used here until a
better description is available.

When these equations are combined, we find that

Hiy Pni—p2 _
— =Cy |———— *)-2/3 12
e e (2% (12
In the present program Cy;=0.3 is used because the
transition process between the various regimes is not yet
understood.

Flow through an opening

Calculation of flows through an opening connecting
spaces with differing static pressures is approached in
the same manner as that used to calculate flow through
an orifice. Based on an analogy with orifice flow, the
mass flux from room i to room k through an opening
of area A4 and due to pressure difference (P;—Py) is
assumed to be

ik = piViCoiA = Cos AV 2(P;— Pi)p;

The coefficient Cy; is the flow coefficient which accounts
for the ratio of the cross-section area at the vena contracta
of the jet to the area of the opening and also accounts for
errors in this simple calculation due to viscous effects and
other geometric effects. The computer program is written
to make i lie on the side of the opening which has the
higher pressure. Hence (P;— Py) will always be positive
and no trouble is encountered in evaluating the square
root in this equation.

In many flows through openings the pressure difference
is a function of elevation due to differences in the densities
of the gas on either side of the opening. In these cases we
assume that the above equation can be used in a differ-
ential form and can then be integrated to obtain the total
mass flow. Thus, we assume that

dring o
%: Coi/2(P;—Pr)ps, that dA=b(y) dy,

and the corresponding mass flow rate is
= Cm‘fij V2(Ps—Pr)p: b(y) dy (13)

Here, b(y) is the width of the opening, y is the vertical co-
ordinate and g the gravitational constant. The integral is
taken over the region between the highest (or upper)
extent of the door yy and the lowest extent y;. The pres-
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sure difference can be written as a function of elevation ¥,
the densities and the values of pressure at y=0 as

(Pi—Pi)=(Pro—Pio)— [\ (o~ pr)g dy=APix  (14)

To summarize this process, we assume that flow
through an opening is dominated by the hydrostatic
pressure field within either room and that at any elevation
the mass flux through an opening can be calculated as
if the opening were a small orifice which does not affect
the pressure field.

The pressure difference across the wall separating
two rooms can change in sign as we move from the
floor to the ceiling for physically reasonable flow situa-
tions. For instance, consider the example shown in
Fig. 4. Here, each room is assumed to be divided into
two regions; the density of the gas in the two lower
regions is p,, and in the upper regions is pn1 and ppg
respectively. In addition, we have assumed that
P> pn2>pn1. The pressure difference across the wall
which is produced by hydrostatic effects when the
pressure difference at the floor is negative is shown in
Fig. 4. Between the floor and elevation 1 the density
difference is zero and we see from Eqn (14) that the
pressure difference must be constant. Between y; and
vz the density difference (pn1—pw) is negative and
consequently the pressure difference must increase.
The position of zero difference is at yo and it is called
the neutral buoyancy point. Above ys the density
difference (pn1—pne) is still negative but we have
assumed it to be less so and hence the slope is larger in
this region.

The direction of mass flow through an opening in
the situation described in Fig. 4(a) will be from room 2
to room 1 if the opening is below o and in the opposite
direction if it is above yo. Both flows can be calculated
from Eqn (8) and the choice of subscripts / and k, and
the direction of the flow, will be fixed according to the
sign of the pressure difference.

Rather than carrying out numerical integration of
terms such as those in Eqns (13) and (14) for each opening
and each time step, we have chosen to carry out the
integrals analytically for all possible cases. For example,
consider the situation shown in Fig. 4(b) where an
opening has its upper bound in region II and lower in

LR Fi=Fp
(@) Pressure distribution (b) Flow field when y,
in various zones is in zone I
WO 1 | m b
1 L.LL4
oI L3 1Lk23
oLk 2.2 |32
7 it jue2d Ju3a 4l

Figure 4. Opening flow calculation scheme.
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region IV, and has a constant width . The mass flux
for the region y;<y<yo is from room 2 into room 1
and is

g1 = CoaV —2APop g b(y1— y))

2 -—
+—\L2 Co2bV pog(pow— pn1) (o—y1)32  (15)

3
where the first term of this equation is given by the
integral over region IV and the second by that over
region III. The value for Yo is

Yo=y1—APo/[(p, — pn1)g]

where APy is (P19—Pso) and has a negative value for
our example and hence yg > y;.

Similar algebraic relationships have been developed
for the flow out of the hot region of room 1 into the
hot region of room 2. For the special case considered
in Fig. 4(b) the flow through the opening between
yoand yy is

Hinie =2T\/2 Co1bV pni(pew— pn1) (Yu—10)¥2  (16)

Because yo is a function of APy, it is clear that all three
terms in Eqns (15) and (16) depend on AP, as well
as the densities in the hot layers and the interface
elevations.

In order to specify mass flow rate expressions for
use in the computer program, we must write algebraic
equations such as (15) and (16) for each of the possible
locations of the upper and lower boundaries of the
opening with respect to y1, yo and ys. In each of ten
examples, algebraic expressions such as those given
in Eqns (15) and (16) have been developed for the
mass flux and are stored in the computer program.
The table shown in Fig. 4 specifically identifies the
ten configurations we must be able to handle. For
instance, when y, is in region II (between Y2 and o)
and y; is in region III (between yo and y;) the configura-
tion is identified as 1.1.2.2. The example shown in
Fig. 4(b)iscase 1.1.2.1,

For cases in which the opening geometry includes
the neutral buoyancy point, flow in both directions
will be present. This situation is illustrated in Fig.
4(b) for the example discussed above. The geometry
of the flow near the door is complex and we expect
that some dependence of the flow coefficient on opening
geometry will occur to produce deviations from our
simple model.

Extensive model measurements (e.g. Ref. 14) have
demonstrated that the flow field sketched in Fig. 4(b)
is a reasonable model for real flows, and suggest that
values of the flow coefficients for such flows lie between
0.6 and 0.7 as long as the Reynolds number of the
flow is above a few thousand. We use 0.6 in the present
calculations. We believe that the low values reported
in Ref. 14 are a result of surface tension effects which
were overlooked in that work.

We have assumed in drawing the pressure vs. elevation
curve shown in Fig. 4 that the density in the ceiling
layer of room 2 is greater than that in room 1, i.e. that
pn1 < pn2. Two other variations of the pressure distribu-
tion are possible with this density distribution and
these are shown in Fig. 5. In case 2 (Fig. 5(a)) the neutral
buoyancy point yo lies above ya, whereas in case 1 (Fig.
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Figure 5. Opening flow calculation scheme, cases 2 and 3.

4) it lies between y; and ys. For the flow shown in
Fig. 5(b) the pressure in room 1 is greater than that in
room 2 at the floor level.

Bookkeeping of a new type must be developed to
account for the complex flow of case 2. Here, hot gas
flows out of the hot region of room 1 into the hot
region of room 2 for y>yo. We also have a hot flow
from room 2 back into room 1 for yo>y>y.. Finally,
a cool flow moves from the lower region of room 2 to
the cool region of room 1 for y;>y>y;. The hot gas
flowing into room 1 from room 2 in situations like this
may form a third region of intermediate density in
room 1 when pnz and pni are appreciably different.
In our treatment of this flow, however, we arbitrarily
assume that the flux of hot gas from room 2 into room 1
(for yo>y>ys) flows into and mixes instantaneously
with the hot gas in the upper layer of room 1. Experi-
mental work is required to check the validity of these
flow field assumptions.

The flow field and calculations of the situation de-
scribed in Fig. 5(b) are relatively straightforward and
approach closely to conventional orifice flows.

We must also deal with situations in which the density
inequality is reversed, i.e. when pn1> pne. This change
in density distribution will primarily affect the sign of
the slope of the pressure vs. elevation curves for positions
above ys. Pressure distributions for the three cases we
need to examine are shown in Figs. 6(a), 6(b) and 6(c).
Note that case 1.1 corresponds to case 1, case 2.1
to case 2, and case 3.1 to case 3 with the exception
that the slope of the line for y> ys changes sign.

Finally, we must consider situations in which the
ceiling layer in room 2 is below that in room 1. For
this situation, the computer has been instructed to
reverse the indices 1 and 2, and calculate mass fluxes as
before.

The mass flow rates corresponding to the conditions
described by the pressure distribution shown in Figs.
5 and 6 have been treated in the same manner as the
example shown in Fig. 4. Equations similar to Eqns
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Figure 6. Opening flow calculation scheme for pni> pne.

(14) and (15) have been developed and their integrals
are included in the computer program. In all, 64 cases
must be considered.

Given the mass flux results, we can calculate values
for the parts of ¢1 and §in which correspond to the
enthalpy fluxes. For instance, let us return to the example
shown in Fig. 4. For this case

(§1) aoor = (ri121) CpT o
(q’hl)door = (mlz)CpThl

where 21 is the sum of the expressions given in Eqn

(15) and #mie is the expression given by Eqn (16).
Similar flux terms can be evaluated for each opening
using these equations to derive the appropriate mass
flux terms.

The ¢; terms also include conduction and radiant
heat fluxes. In the present program these must be given
as specified functions of the time. However, when
better models are available they can easily be included
in the program.

Quasi-steady-state approximation

We return now to the conservation relation given in
Eqn (6), and make one further approximation—that
the dP/dr term is negligible. This approximation can
be justified by comparing the magnitudes of the terms
in Eqn (6) when the mass and energy flux terms are
specified by use of equations such as (19) or (20).

We can also proceed by noting that when room
pressures rise to one hundredth of one atmosphere
above the pressure in the ambient atmosphere, velocities
of the order of many tens of meters per second will be
produced through openings connecting the rooms with
the atmosphere. Since velocities of this order are only
observed under unusual circumstances, we conclude
that pressure differences will be kept to values so small
that pressure variations around the ambient value
will have a negligible effect on gas density and tem-
perature. This question is discussed in more detail
in Ref. 8.

The conservation equations for each room are reduced
to a set of two nonlinear first-order equations given in

© Heyden & Son Ltd, 1980




Eqns (7) and (8) and one algebraic equation:
Gi+gni+ Q=0 (17

The plume and door-jet entrainment rates are specified
in previous sections. The parts of the ¢; terms which
are enthalpy fluxes can be calculated from the opening
mass flow calculations and the appropriate CpT terms;
the heat transfer terms must be given as specified functions
of the time. Finally, the equation of state can be used
to relate pressure, density and temperature. Although
considerable bookkeeping is required here, the procedure
is straightforward.

The six independent variables are the pressures,
ceiling layer densities and interface heights in the two
rooms.

COMPUTER PROGRAM

Numerical solution of the four ordinary differential
equations and the two nonlinear algebraic equations
for pressures, ceiling layer heights and densities are
coded in FORTRAN IV to be executed by an IBM 370
computer at the CIT Computing Center.

At each time step the nonlinear algebraic equations
are solved by a numerical Newton’s method to obtain
the pressures and hence the mass and energy fluxes
through the openings, and then the differential equations
are solved by a CIT library routine which incorporates
the fourth-order Runge-Kutta—Gill method, the Adams-
Moulton predictor—corrector formula and a provision
for automatic control of truncation error. Details of the
computer program are described in Ref. 9.

DISCUSSION OF RESULTS

In this section we shall discuss the behavior of the ceiling
layers in a number of one- and two-room configurations
which are predicted by the program. Some results of
general interest are obtained concerning the influence
of several parameters and a number of examples are
presented.

In presenting these results a modified time scale has
been used which takes into account roughly the effect
of fire heat input rate when the dimensionless heat
input rate, based on room height Q*, is less than 0.10.
This dimensionless parameter is

o
puCoT .\ gh h?

The aim of the examples presented here is to illustrate
the output of the program, to show some features of
the early stages of a fire which we believe occur in real
fires and, in particular, to determine the duration or
time scale of this early stage.

Consider first a two-room example which exhibits
some of the capabilities of the program. The first room
has a height 4 and is connected to the outside by a
window which is almost closed but contains leaks which
are modeled by an opening with y;=0.4k and y,=0.8%4
and a width 5=0.00254. The door which connects
the two rooms is almost closed at first; its width increases

t*=(hVgh/SH(QHY3,  Q*=
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Figure 7. Two-room example.

linearly starting at #*=10 and it is completely opened
at t*=11.5. The door top is located at 0.8134 and for
0<r*<10 its width is 0.002h. After r*=11.5, the
door width is 0.375h. Room 2 has the same area and
height as room 1 and is connected to the outside by
an open door with height 0.8134 and width 0.375A.

The fire grows linearly from a very small value at
t*=0 to a value corresponding to Q*=0.01 at *=8
and remains constant thereafter. Heat losses to the
walls from the hot layer in room 1 are 259 of the fire
heat input rate, and in room 2 they are 20% of
(r1n12)Cp(Th1—T), i.e. the net enthalpy flux of the
hot flow through the door from room 1.

The dimensionless ceiling layer interface heights
yilh and density ratios for the ceiling layers pni/p
are shown in Fig. 7. The ceiling layer interface height
and density in room 1 fall rapidly for #* >0 and continue
to decrease until the door opens. Small changes occur
in the second room after 1*=2.4 when the ceiling layer
in room 1 falls below the soffit of the door connecting
rooms 1 and 2. As the door is opened, a rapid flow
of hot gas enters room 2 and the steady-state values
of the parameters are very nearly reached at ¢*=20.

In order to put these parameters in dimensional
form we must assign values to room height, etc. When
we pick: height=h=2.5m, floor area=S =20 m?2 and
T,=20°C, then

heat input= Q= Q*(1.11 x 104 kW),
and the steady value is 111 kW;
time=1=(*)x(7.55s).

For these values, note that when the door is opened
at about 75 s after the start of the fire, the temperature
in the ceiling layer of the first room is already about
90°C and that the interface of this layer is at about
0.8 m above the floor level. The time required after
the door is opened for the excess hot gas in room 1
to flow into room 2 is about 40s. Final ceiling layer
temperatures are about 200 °C.,

In the following paragraphs we shall first examine
the effects of changing some of the parameters which
appear in our program and then give a number of
examples.

Entrainment parameters and flow coefficients

A number of constants appear in the fire plume and
door flow modeling equations and it is of interest
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Table 1. Effect of changing flow coefficients for flow through”opening?

o+ Con= 0.6 0.
Coo= 0.6 0.

10-5 yi/h 0.585 0.
(1oo (—”%‘i)) 0.604 0.

10-2 ya/h 0.560 0.
(—ﬁ(”"";w”“‘)) 0.396 0

® Values for yu/A=0.813 and b/h=0.375.

7
7

600
578

577

.384

0.8 1.0 0.6 1.0
0.8 1.0 1.0 0.6
0.612 0.613 0.590 0.625
0.558 0.520 0.595 0.530
0.591 0.613 0.566 0.604
0.374 0.360 0.391 0.366

to compare the sensitivity of the ceiling layer depth and
density to changes in these parameters. In particular,
we are concerned with the sensitivity of the solutions
to the choice of flow coefficients for the flow through
the openings and the entrainment parameters for the
plume and the door jet. We shall examine the influence
of the first two parameters for a single room which
has a single door opening to the outside, and which
has a soffit at 0.813% and a width of b=0.3754.

Experimental data suggest that the values for the
two orifice coefficients, Co, and Con, which appear
in equations for the door flows, should lie in the range
0.6-1.0 and that for many configurations of interest
the value is close to 0.60. The effects of changes in these
coeflicients on the hot layer density and ceiling layer
thickness are illustrated in Table 1. Here, steady values
of interface height and ceiling layer density are presented
as a function of Q* and the flow coefficients. The steady
values were obtained for dimensionless times of the
order of 40 in all cases. Flow coefficients in the range
0.6-1.0 and for Q* values of 10-5 and 10-2 are considered.

Changing both coefficients simultaneously from 0.6
to 1.0 causes the ceiling layer interface height y; to
increase by less than 109;. The density ratio (pn1/p o)
for the smaller value of O* is very close to 1 and the
quantity (po,—pn1)/(p.) is used for both cases to make
the changes easier to perceive. This density difference
ratio decreases by less than 149, as the coefficients
increase from 0.6 to 1.0 for both values of Q* and
this change is a result of the increase in 1 which increases
the entrainment in the plume and hence decreases the
plume mass-averaged temperature. The last two columns
of the table illustrate the changes produced when the
coefficients are not of equal value.

The variations in the interface level y1 and density
of the ceiling layer produced by a wide range of values

Table 2. Effect of changing entrainment rate parameter Cg?

Ce= 0.046 0.093 0.1865 0.373 0.746
yi/h 0.71  0.65 0.56 0.45  0.33
P=T pnt 0.64 0.51 0.40 0.32  0.29

P oo
Cx
— 1 1
o 3 1 1 2 4

# Values for yu/h=0.813, b/h=0.375 and Q*=0.01 as in
Table 1.
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of flow coefficients are less than + 6 % for the conditions
considered here. Hence, our solutions will not be critically
dependent on the accuracy of the value used in our
computations. We shall use 0.60 for both coefficients.
The effects of changing the plume entrainment rate
constant, Cg=(#CyC;2) (which appears in Eqn (11)),
on the interface height and ceiling layer density are
shown in Table 2 for the same room and fire uses in
the above example and with Q*=0.01. Clearly, changing
Cg by factors of 2 produces appreciable changes in
both parameters and hence Cg must be known to
within +50% to avoid serious errors. The value used
in the other calculations described here is Ce=0.1865
which is satisfactory for describing the far field of
ideal fires, i.e. the plume above an undisturbed fire.

Heat input rate, one room

The influence of the dimensionless heat input parameter
Q* on the transient behavior of the ceiling layer interface
level and the density is shown in Fig. 8 for a single
room with a single door. In this example the fire heat
input rate is zero up to t*=0, and is constant thereafter.
For purposes of comparison, the density is presented
as the ratio DRE(phlo—phl)/(phlo—phls), where pn1g
is the value when the plume first reaches the ceiling,
pn1 is the instantaneous valué of ceiling layer density,
and pnis is the ceiling layer density after the steady
state has been achieved. The time scale is the para-
meter £*,

In this figure, curves for values of O* of 1074, 10-3,
102 and 10-! are shown. For the lowest three values
of Q% the time scale used here, t*, does a reasonable

1.0

Density ratio

j? 08 for Q%= IO"2
= 107
g2 1073
T 2 06 jo~*
£2 —F
3 ///
$3 oaf
s ‘é Inferface heigh_t/
g for @*=1074
E o2 1073
e 1072
107!

1 1 1 | ! l J 1
[¢] 2 4 6 8 10 12 14 16 18 20

Dimensionless time, #*

Figure 8. Effect of Q* on density ratio and interface height for a
single room.
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job of reducing the three curves to a single curve. Curves
not shown here, for even smaller values of Q% are
indistinguishable from the Q*=10-4 curves. Thus,
t* is a useful scaling parameter for small fires, and the
appropriate time scale for this phase of the fire appears
to be 5-10 for this room and door geometry. However,
for O0*>10-1 the simple scaling of the time is no longer
satisfactory and large deviations occur.

Opening geometry

The effects of room scale, both floor area S and room
height £, are contained within the dimensionless ceiling
layer height yi=yi/h and time scale ¢*. Hence, the
results presented in Fig. 8 are general with respect to
these parameters. However, the door geometry which
is described by its soffit height yy and width b appears
explicitly in the calculation and will affect the transient
and steady-state results.

Fire geometry

The effects of changing the fire height from floor level
to a point 4/4 and A/2 is shown in Table 3 for a dimension-
less heat input parameter of Q*=0.01 and the standard
door opening. The transient times not shown here are
almost equal to that for the standard fire position.
Changes in y1 and (pni/p1) result from the decreased
entrainment of the fire plume.

Similar results are also shown in Table 4 where a
comparison is presented of calculations for the standard
point source plume and for a line plume with the same
dimensionless heat addition rates. Again, time scales
were almost equal for the two cases and the gross
difference in y1 and pn1/p1 results from the large difference
in plume entrainment rates.

Hospital corridor case

As a final example, consider a two-room configuration
in which the fire room (room 1) is connected to a much
larger room (room 2). The connection between the rooms
is the standard door (yu/A=0.813 and b/h=0.375),
and room 2 is connected to the outside only through
a small leak (e.g. under a closed door) with an area
about 6.5% of the area of this door. We arbitrarily

Table 3. Effect of fire elevation on ceiling layer height and

density?
yo/h® yi/h ph1/pw
0 0.53 0.59
0.25 0.63 0.45
0.50 0.71 0.23

2 p=0.375h, yu=0.813hA.
b yqis the height of fire origin above
the floor.

Table 4. Comparison of ceiling layer height and density for line
and point source fires®

Fire Q* Q" yi/h put/pw
Point source 0.01 — 0.59 0.53
Line source — 0.01 0.24 0.72

2 b=0.375h, yu=0.813h.
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Figure 9. Hospital corridor example.

assume that 409, of the heat input from the fire is
lost to the walls in the fire room and that 20% of the
enthalpy flux to the second room is transferred to the
walls. The heat input from the fire grows linearly to
a value of 111 kW at 375 s and remains constant there-
after. The dimensions of the first room are a height
h1=2.5m and an area S;=20m2, and the dimensions
of the second room are #3=2.5m and S;=200 m2.
Note that S3=10S8].

The ceiling layer density, normalized by the ambient
density, and the interface height, normalized by the
room height A#=2.5m, are shown as a function of the
time in Fig. 9. The interface height in the fire room
(y1) drops rapidly in the first minute to a value of about
0.45A and remains at that level for about another 3 min.
The interface height in room 2 falls to the same level
at about Smin and then both levels continue to fall
rapidly. Remember that the heat input of the fire reaches
its full value at 6.25 min. An interface height of 0.45k
or about 1.13m is probably slightly above the level
of the head of a patient lying in a hospital bed.

For times greater than 5 min the interface height in
room 2 is below that in room 1, and after 4.5 min
the pressure distribution is such that hot ceiling layer
gas from room 2 recirculates into room 1. The flow
field is similar to that shown in Fig. 6(c) with the sub-
scripts 1 and 2 reversed. To illustrate the flow field
during this period, flow data are given in Table 5.
Note that the flow of hot gas from room 2 back into
room 1 is comparable to the corresponding cold flow.

The solutions are certainly not reasonable when
»1<0.2h since the fire will extend into the ceiling layer
and hence one would expect the plume model and
perhaps the heat input rate to be incorrect. Also,
values of pni/p. less than 0.1-0.2 are not reasonable.
Hence, the solution for ¢ > 10 m is not valid.

Table 5. Flow conditions for hospital corridor example at
6.5 min

y1=1.01 mand y2=0.79 m

Flow of hot gas from room 1 to room 2
(adjacent to soffit)

Flow of hot gas from room 2 to room 1
(near interface) }

Flow of cool air from room 2 to room 1
(near floor)

0.51 kg st
0.20 kg s—?

0.27 kg s-1

© Heyden & Son Ltd, 1980
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SUMMARY

W

e have presented a few results of numerical calculations

carried out with a simple model which is being de-
veloped to predict the motion of combustion products
and fresh air in a structure with a fire. We view this
model as an element in a more ambitious calculation

which will lead to the prediction of the spread of fire

and

combustion products through a complex building.
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APPENDIX: DEFINITIONS OF SYMBOLS

b opening width

Cg (mCyC12); see Eqn (11)

Cr, Cy, C; constants in buoyant axisymmetric plume
representation

Cy constant in door-jet entrainment equa-
tion

Co; flow coefficient for flow through openings
(see Eqn (13))

Cp, Cy specific heats at constant pressure and

Cra, Cyz, Ciz

constant volume
constants in line plume representation

g gravitational constant

hy height of ith room

L length of line fire or plume

Iy scale length for velocity distribution in
plume

Iy scale length for tempcrature distribution
in plume

my sum of all mass fluxes into cool layer
of room i

mg entrainment rate of fire plume in cool
layer

my fuel flow rate to fire

Minig flow from hot layer of room i to hot
layer of room J

Mg flow from cool layer of room i to cool
layer of room J

my door-jet entrainment rate

Hing sum of all mass fluxes into the hot layer
of room

P pressure

g net heat and enthalpy flux to gas in the
cool layer
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dhi net heat and enthalpy flux from gas in
hot layer
o fire heat release rate
o* dimensionless parameter,
0/pCpT oV gn1 12
Qq* dimensionless parameter,
11 Cp(Th1 ~T2)/p2CpTo\/'gZa Z 42
Qz* dimensionless parameter,
Q/P prTm\/g—ZZ 29
for axisymmetric plume
0% dimensionless parameter,
0/pCoTxVEZ ZL,
for line plume
r radial coordinate
R gas constant for air
Si area of ith room
t time -
i dimensionless time, v(h+/gh/S)
t* second dimensionless time, 7Q*1/3
T; temperature of gas at location i
AT difference between temperature of a
L plume and ambient temperature
AT mass-averaged values of temperature
difference in buoyant plume
w vertical velocity in plume
Yo height of fire above floor
y1 and ys height of interface in room 1 or 2
yuand y; height to upper and lower edges of

opening between rooms
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yll{l’ l}
yl{l’ i}

Z
Zq
0

Subscripts

c
h

height to upper edge of opening i between
room [ and outside

height to lower edge of opening i/ between
room I and outside

vertical coordinate

vertical coordinate for door jet, ys — yo
density

cold layer
hot layer

© Heyden & Son Ltd, 1980

~.

m2

lor2
10

property of hot layer in room §

property of cool layer in room i =1 or 2
property on plume centerline for an
axisymmetric plume

property on plume centerline for a line
plume

neutral buoyancy point in flames through
an opening (see Fig. 3)

property in room 1 or 2

value when plume reaches ceiling in first
room

property of ambient gas
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